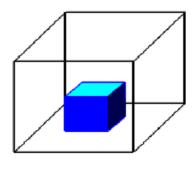
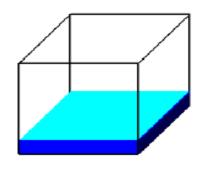
Lecture 2


Properties of Pure Substances

Properties of Pure Substances

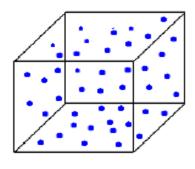
Phases of a Pure Substance:

Macroscopic Level:


3 States of Matter

Solid

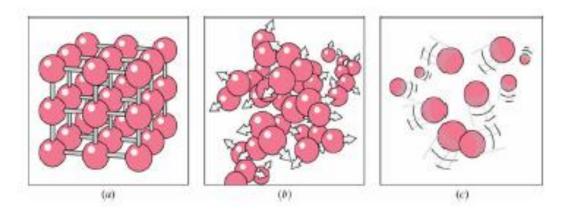
Holds Shape


Fixed Volume

Liquid

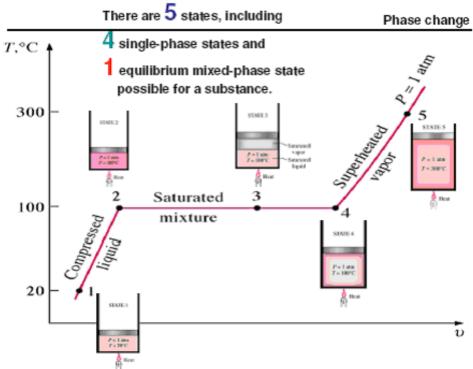
Shape of Container Free Surface

Fixed Volume


Gas

Shape of Container

Volume of Container


Macroscopic Level:

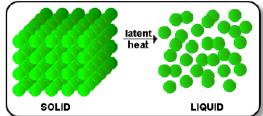
- a) *Solid:* Intermolecular bonds are the strongest. The molecules are arranged in a 3-dimensional pattern (lattice), which is repeated throughout.
- **b)** *Liquid:* Molecules are no longer at fixed positions and they can translate freely.
- c) Gas: Intermolecular bonds are the weakest. There is no molecular order and molecules move about at random.

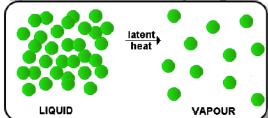
Phase Change:

- 1- Compressed or sub-cooled liquid: The liquid is not about to vaporize.
- **2- Saturated liquid:** The liquid is about to vaporize.
- **3- Saturated liquid and vapor:** There is a mixture.
- **4- Saturated vapor:** The vapor is about to condense
- **5- Superheated vapor:** the vapor is not about to condense.

Saturation Temperature and Pressure:

Note:- The temperature at which a liquid starts boiling depends on the pressure and vice versa.


- ✓ At a give pressure, the temperature at which a pure substance changes phase is called the *saturation temperature*.
- ✓ At a given temperature, the pressure at which a pure substance changes phase is called the *saturation pressure*.


Latent heat:

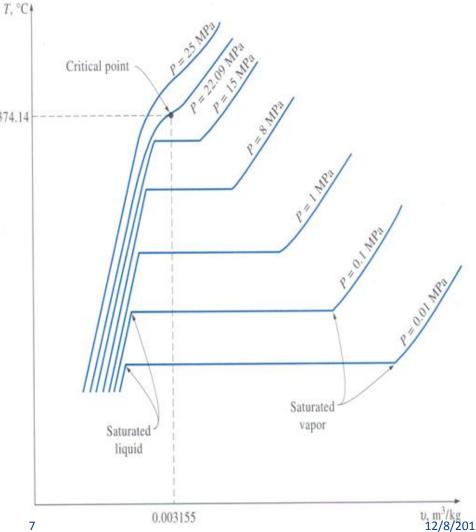
The amount of energy absorbed or released during a phase-change process is called latent heat.

5

- •Latent heat of fusion is the amount of energy absorbed during melting.
- •Latent heat of vaporization is the amount of energy absorbed during vaporization.

Some values for specific latent heats of fusion and vaporization:

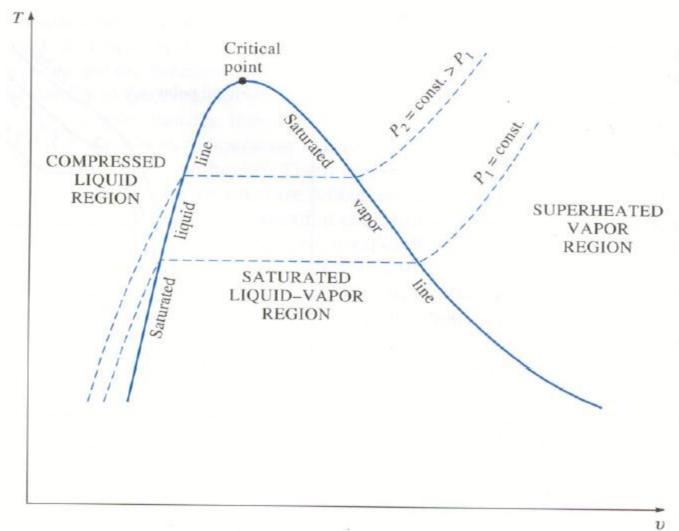
Substance	Specific latent heat of fusion kJ.kg ⁻¹	Melting temperature [©] C	Specific latent heat of vaporization kJ.kg ⁻¹	Boiling temperature [©] C	
Water	334	0	2258	100	
Ethanol	109	-114	838	78	
Ethanoic acid	192	17	395	118	
Chloroform	74	-64	254	62	
Mercury	11	-39	294	357	
Sulphur	54	115	1406	445	
Hydrogen	60	-259	449	-253	
Oxygen	14	-219	213	-183	
Nitrogen	25	-210	199	-196	


[❖]Specific latent heat of fusion of some metals: Aluminium = 321, cupper = 176, silver = 88, Tin = 59, lead 22, Nickel = 19, and mercury = 12 kJ.kg⁻¹₁₀

Property Diagrams for Phase-change Process

The *T-V* diagram

As pressure increases:


- ➤ Water starts boiling at higher temperature
- > The specific volume of the saturated liquid becomes larger whereas the specific volume of the saturated vapor becomes smaller.

Lecture 2

Properties of Pure Substances

The *T-V* diagram

Critical point – the saturated liquid and saturated vapor states are identical.

At the *critical point*: $T=T_{cr}$, $P=P_{cr}$, and $v=v_{cr}$.

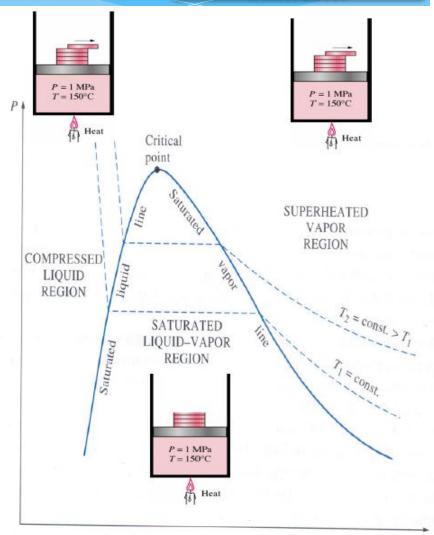
 $T_{\rm cr}$ is the temperature above which a gas cannot be liquefied.

 $P_{\rm cr}$ is the pressure that is needed to cause the gas to condense at T_{cr} .

At pressure above P_{cr},

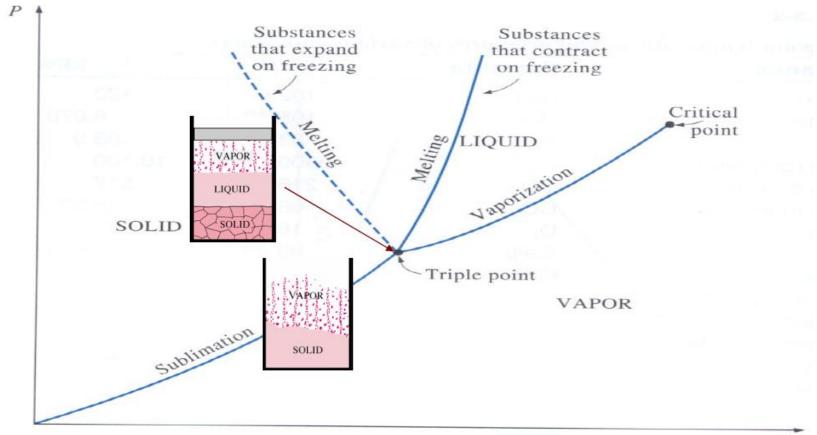
there will be no distinct phase change process

Substances past the critical point are known as supercritical fluids.


Substance	T _{cr} (K)	P _{cr} (MPa)	v _{cr} (m³/kmol)
Air	132	3.8	0.0883
Nitrogen	126	3.4	0.0899
Oxygen	155	5.1	0.0780
Carbon dioxide	304	7.4	0.0943
Helium	5	0.2	0.0578
Water	647	22.1	0.0568

Lecture 2 Properties of Pure Substances

The *P-v* diagram


Consider compressed liquid water at 1 MPa and 150 °C.

- When the pressure is reduced to $P_{\text{sat@150C}} = 0.4758$ MPa, the water will start to boil.
- ➤ T and P remain constant during vaporization. Once the last drop is vaporized, P decreases whereas v increases.

The *P-T* diagram (phase diagram)

The location at which the three phase change border lines meet is called the *Triple Point*.

Properties of Pure Substances

- \triangleright No substance can exist in the liquid phase at $P < P_{tp}$.
- At $P < P_{tp}$, a substance can pass from the solid to vapor phase directly (sublimation) without passing through the liquid phase.
- For carbon dioxide that has a large $P_{\rm tp}$ (> $P_{\rm atm}$) sublimation is the only way to change from the solid to vapor phase at $P_{\rm atm}$.

Substance	T _{tp} (K)	P _{tp} (kPa)
Nitrogen	63.2	12.6
Oxygen	54.4	0.15
Carbon dioxide	216.6	517
Helium	2.2	5.1
Water	273.2	0.61

Thermodynamic Property Tables

Important thermodynamic properties are:

- Temperature-T
- Pressure-P
- \triangleright Volume-V (m³) and specific volume-v (m³/kg) = V/m
- Internal energy-U,u (kJ, kJ/kg)
- > Enthalpy-H,h (kJ, kJ/kg):A combinational Property

$$H = U + PV$$
 or $h = u + Pv$ (kJ)

Entropy-S,s (kJ/K, kJ/kg.K): A measure of system disorder

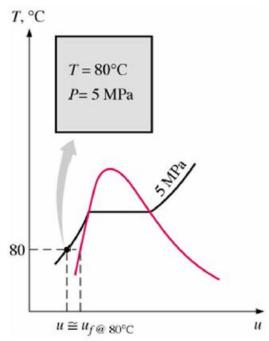
	ABLE A-4 aturated water—Temperature table											
		Specific	volume, /kg	<i>Internal energy,</i> kJ/kg			<i>Enthalpy,</i> kJ/kg			Entropy, kJ/kg · K		
Temp., T°C	Sat. press., P _{sat} kPa	Sat. liquid, v _f	Sat. vapor, <i>v</i> _g	Sat. liquid, u _f	Evap.,	Sat. vapor, u _g	Sat. liquid, h _f	Evap.,	Sat. vapor, h _g	Sat. liquid, s _f	Evap.,	Sat. vapor, s _g
0.01	0.6113	0.001000	206.14	0.0	2375.3	2375.3	0.01	2501.3	2501.4	0.000	9.1562	9.156
5	0.8721	0.001000	147.12	20.97	2361.3	2382.3	20.98	2489.6	2510.6	0.0761	8.9496	9.02
10	1.2276	0.001000	106.38	42.00	2347.2	2389.2	42.01	2477.7	2519.8	0.1510	8.7498	8.900
15	1.7051	0.001001	77.93	62.99	2333.1	2396.1	62.99	2465.9	2528.9	0.2245	8.5569	8.78
20	2.339	0.001002	57.79	83.95	2319.0	2402.9	83.96	2454.1	2538.1	0.2966	8.3706	8.66
25	3.169	0.001003	43.36	104.88	2304.9	2409.8	104.89	2442.3	2547.2	0.3674	8.1905	8.55
30	4.246	0.001004	32.89	125.78	2290.8	2416.6	125.79	2430.5	2556.3	0.4369	8.0164	8.45

5 620

Compressed Liquid

- ➤ Compressed liquid tables are not commonly available.
- ➤ This is because of the relative independence of compressed liquid properties from pressure.
- ➤ Increasing the pressure 100 times often causes properties to change less than 1 percent.
- A general approximation is to treat compressed liquid as saturated liquid at the given *temperature*. i.e. v = vf @ T, u = uf @ T, h = hf @ T.
- ➤ Characteristics of compressed liquid:

 $P > P_{sat}$ at a given T $T < T_{sat}$ at a given P $v < v_f$; $u < u_f$; $h < h_f$ at a given T or P


Example 2.1

Determine the internal energy of compressed liquid water at 80 °C and 5 MPa using

- (a) from the compressed liquid table?
- (b) saturated liquid data. What is the error involved in the second case?

Solution:

- (a) From the compressed liquid table u = 333.73 kJ/kg
- (b) From the saturation table at 80 °C u = 334.86 kJ/kg error = (334.86-333.72)/333.72 = 0.34 %

Saturated Liquid-Vapor Mixture

A saturated mixture can be treated as a combination of two subsystems:

$$\begin{array}{c} \text{Saturated vapor} \\ v_g \\ \hline v_f \\ \text{Saturated liquid-vapor} \\ \text{Saturated liquid} \end{array}$$

Mass fraction of vapor or the *quality*:

$$x = \frac{m_{vapor}}{m_t} = \frac{m_{vapor}}{m_{liquid} + m_{vapor}} = \frac{m_g}{m_f + m_g}$$

- \rightarrow x = 0 for purely saturated liquid
- \triangleright x = 1 for purely saturated vapor

Properties of Pure Substances

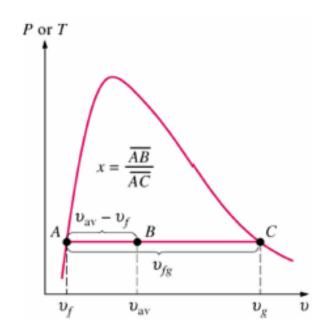
Average Values: The total volume is the sum of these two:

$$V = V_f + V_g; m_t = m_f + m_g$$

$$m_t v_{av} = m_f v_f + m_g v_g = (m_t - m_g) v_f + m_g v_g$$

Dividing by $m_{\rm t}$ yields:

$$v_{av} = (1 - x)v_f + x v_g = v_f + x v_{fg}$$
 m³/kg


Solving for the quality:

$$x = \frac{v_{av} - v_f}{v_{fg}}$$
or $v_{av} = v_f + x v_{fg}$ (m³/kg)

Similarly for internal energy and enthalpy:

$$u_{av} = u_f + x u_{fa}$$
 (kJ/kg)

$$h_{av} = h_f + x h_{fq}$$
 (kJ/kg)

Properties of Pure Substances

Example

A rigid tank contains 10 kg of water at 90 °C. If 8 kg of the water is in the liquid form and

the rest is in the vapor form,

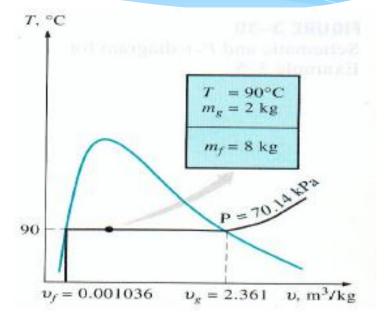
determine

- (a) the pressure in the tank and
- (b) the volume of the tank.

Solution:

(a) since the two phases coexist in equilibrium:

$$P = P_{\text{sat at } 90^{\circ}\text{C}} = 70.14 \text{ kPa}$$
 (Table 2.4)

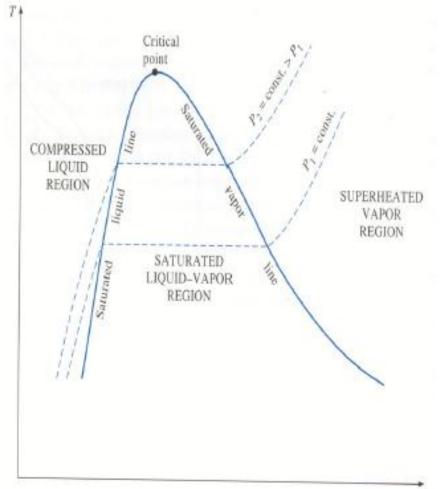

(b)
$$v_f = 0.001036 \text{ m}^3/\text{kg}$$
; $v_g = 2.361 \text{ m}^3/\text{kg}$ (Table 2.4)

$$V = V_{\rm f} + V_{\rm g}$$

$$V = m_{\rm f} v_{\rm f} + m_{\rm g} v_{\rm g}$$

= $(8 \text{ kg})(0.0011036 \text{ m}^3/\text{kg}) + (2 \text{ kg})(2.361 \text{ m}^3/\text{kg})$

$$= 4.73 \text{ m}^3$$


Superheated Vapor

Since the superheated region is a single-phase region, temperature and pressure are no longer dependent properties.

Characteristics of superheated vapor:
P<P_{sat} at a given T

 $T > T_{sat}$ at a given P

 $v>v_g$; $u>u_g$; $h>h_g$ at a given T or P.

Lecture 2

Properties of Pure Substances

Superh	eated water	r							Substances				
T °C	v m³/kg	u kJ/kg	h kJ/kg	s kJ/kg - K	v m³/kg	u kJ/kg	h kJ/kg	s kJ/kg · K	v m³/kg	u kJ/kg	h kJ/kg	s kJ/kg · K	
Jing				C)*	P = 0.05 MPa (81.33°C)				P = 0.10 MPa (99.63°C)				
Sat.	14.674	2437.9	2584.7	8.1502	3.240	2483.9	2645.9	7.5939	1.6940	2506.1	2675.5	7.3594	
50	14.869	2443.9	2592.6	8.1749	55000000			1.150.510.500.00					
100	17.196	2515.5	2687.5	8.4479	3.418	2511.6	2682.5	7.6947	1.6958	2506.7	2676.2	7.3614	
150	19.512	2587.9	2783.0	8.6882	3.889	2585.6	2780.1	7.9401	1.9364	2582.8	2776.4	7.6134	
200	21.825	2661.3	2879.5	8.9038	4.356	2659.9	2877.7	8.1580	2.172	2658.1	2875.3	7.8343	
250	24.136	2736.0	2977.3	9.1002	4.820	2735.0	2976.0	8.3556	2.406	2733.7	2974.3	8.0333	
300	26.445	2812.1	3076.5	9.2813	5.284	2811.3	3075.5	8.5373	2.639	2810.4	3074.3	8.2158	
400	31.063	2968.9	3279.6	9.6077	6.209	2968.5	3278.9	8.8642	3.103	2967.9	3278.2	8.5435	
500	35.679	3132.3	3489.1	9.8978	7.134	3132.0	3488.7	9.1546	3.565	3131.6	3488.1	8.8342	
600	40.295	3302.5	3705.4	10.1608	8.057	3302.2	3705.1	9.4178	4.028	3301.9	3704.4	9.0976	
700	44.911	3479.6	3928.7	10.4028	8.981	3479.4	3928.5	9.6599	4.490	3479.2	3928.2	9.3398	
800	49.526	3663.8	4159.0	10.6281	9.904	3663.6	4158.9	9.8852	4.952	3663.5	4158.6	9.5652	
900	54.141	3855.0	4396.4	10.8396	10.828	3854.9	4396.3	10.0967	5.414	3854.8	4396.1	9.7767	
1000	58.757	4053.0	4640.6	11.0393	11.751	4052.9	4640.5	10.2964	5.875	4052.8	4640.3	9.9764	
1100	63.372	4257.5	4891.2	11.2287	12.674	4257.4	4891.1	10.4859	6.337	4257.3	4891.0	10.1659	
1200	67.987	4467.9	5147.8	11.4091	13.597	4467.8	5147.7	10.6662	6.799	4467.7	5147.6	10.3463	
1300	72.602	4683.7		11.5811	14.521	4683.6		10.8382	7.260	4683.5	5409.5	10.5183	
	p =	0.20 MF	a (120.23	3°C)	P =	P = 0.30 MPa (133.55°C)				P = 0.40 MPa (143.63°C)			
Sat.	0.8857	2529.5	2706.7	7.1272	0.6058	2543.6	2725.3	6.9919	0.4625	2553.6	2738.6	6.8959	
150	0.9596	2576.9	2768.8	7.2795	0.6339	2570.8	2761.0	7.0778	0.4708	2564.5	2752.8	6.9299	
200	1.0803	2654.4	2870.5	7.5066	0.7163	2650.7	2865.6	7.3115	0.5342	2646.8	2860.5	7.1706	
250	1.1988	2731.2	2971.0	7.7086	0.7964	2728.7	2967.6	7.5166	0.5951	2726.1	2964.2	7.3789	
300	1.3162	2808.6	3071.8	7.8926	0.8753	2806.7	3069.3	7.7022	0.6548	2804.8	3066.8	7.5662	
400	1.5493	2966.7	3276.6	8.2218	1.0315	2965.6	3275.0	8.0330	0.7726	2964.4	3273.4	7.8985	
500	1.7814	3130.8	3487.1	8.5133	1.1867	3130.0	3486.0	8.3251	0.8893	3129.2	3484.9	8.1913	
600	2.013	3301.4	3704.0	8.7770	1.3414	3300.8	3703.2	8.5892	1.0055	3300.2	3702.4	8.4558	
700	2.244	3478.8	3927.6	9.0194	1,4957	3478.4	3927.1	8.8319	1.1215	3477.9	3926.5	8.6987	
800	2.475	3663.1	4158.2	9.2449	1.6499	3662.9	4157.8	9.0576	1.2372	3662.4	4157.3	8.9244	
200	2.705	3854.5	4395.8	9.4566	1,8041	3854.2	4396.4	9.2692	1.3529	3853.9	4395.1	9.1362	
1000	2.937	4052.5	4640.0	9.6563	1.9581	4052.3	4639.7	9.4690	1.4685	4052.0	4639.4	9.3360	
1100	3.168	4257.0	4890.7	9.8458	2.1121	4256.8	4890.4	9.6585	1.5840	4256.5	4890.2	9.5256	
1200	3.399	4467.5	5147.5	10.0262	2.2661	4467.2	5147.1	9.8389	1.6996	4467.0	5146.8	9.7060	
1300	3.630	4683.2	5409.3	10.1982	2.4201	4683.0	5409.0	10.0110	1.8151	4682.8	5408.8	9.8780	
		100012		10.100	2.7201	1000.0	5455.0	10.0110	1.0101	4002.0	5400.0	3.6760	

Example

Determine the temperature of water at a state of P = 0.5 MPa and h = 2890 kJ/kg.

Solution:

At 0.5 MPa, the enthalpy of the saturated vapor is h_g =2748.7 kJ/kg. Since $h > h_g$ =>, it is **a superheated vapor**.

Under 0.50 MPa in the following table we read that:

At
$$T = 200$$
°C, $h = 2855.4$ kJ/kg, and at $T = 250$ °C, $h = 2960.7$ kJ/kg.

Thus T is between 200°C and 250°C. By linear interpolation, T = 216.4°C

Lecture 2

Properties of Pure Substances

The Ideal-Gas Equation of State - history

The pressure of gases is inversely proportional to their volume (for a fixed mass of gas at a constant temperature T).

$$V = f(T) / P$$

➤ At a constant (but low) pressure the volume of a gas is *proportional* to its temperature.

$$V/T = f(P)$$

> under conditions of the same temperature and pressure, equal volumes of all gases contained equal number of molecules.

$$V = nf''(P, T)$$

Robert Boyle, Irish physicist and chemist, c 1670s.

Jacques A. C. Charles in 1787,

Amedeo Avogadro (1776-1856):

The Ideal-Gas Equation of State

Any equation that relates the pressure, temperature, and specific volume of a substance (or whatever else) is an *equation of state*.

Ideal-gas equation of state:

$$PV = mRT$$

or $Pv = RT$ $v = V/m$
or $P = \rho RT$ $\rho = 1/v$

R = gas constant which is different for each gas (in kJ/kg.K or kPa.m³/kg.K)

P = absolute pressure (in kPa)

T = absolute temperature (in K)

m = mass (in kg)

v = specific volume (v = V/m) in kg/m3

r = density (= 1/v) in m3/kg

In terms of mass:

$$PV = mRT$$

In terms of mole:

$$PV = nRuT$$

so:

$$nRu = mR$$
 $Ru = R(m/n)=RM$

n = *number of moles*

M = the molar mass (mass of one mole) or molecular weight (m = nM) Ru = universal gas constant = 8.314 kJ/kmol.K = 8.314 kPa m³/kmol.K

Note:-

- ✓ Many familiar gases such as air, nitrogen, oxygen, hydrogen, helium, argon, and carbon dioxide follow the ideal gas relation with negligible error (less than 1 percent).
- ✓ Dense gases such as *water vapor* should not be treated as ideal gases.

Properties of Pure Substances

Is water vapor an ideal gas?

At pressure below 10 kPa, water vapor can be treated as an ideal gas, regardless of Temperature

No – high pressure steam in power plant applications

Yes – air conditioning applications

Compressibility Factor (*Z***)**

$$Z = \frac{Pv}{RT} = \frac{v_{actual}}{v_{ideal}}$$
 ($v_{ideal} = RT/P$)

Z is a measure of deviation from Ideal-gas behavior.

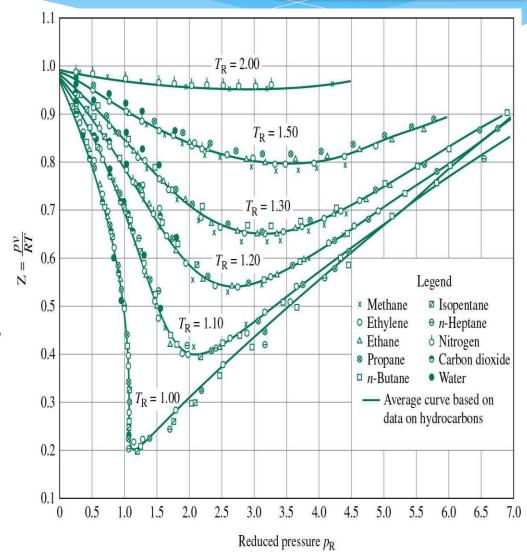
Z = 1, ideal gas Z <> 1, non-ideal or real gas

Experimental finding: Gases behave differently at a given temperature and pressure, but they behave very much the same at temperatures and pressures normalized with respect to their critical temperatures and pressures.

Properties of Pure Substances

The generalized compressibility chart

PR = reduced pressure


$$P_R = \frac{P}{P_{cr}}$$

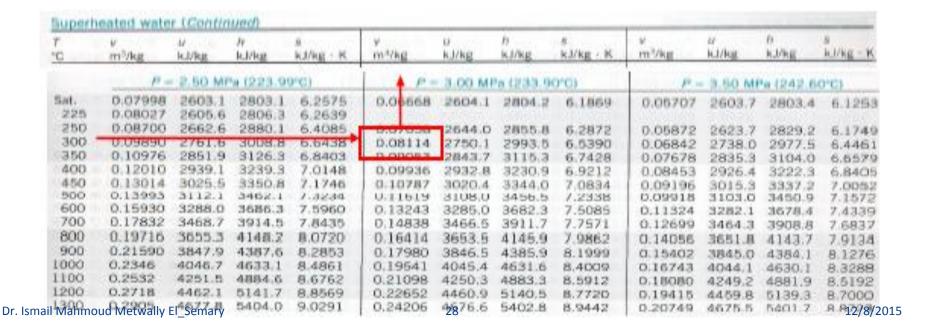
TR = reduced temperature

$$T_R = \frac{T}{T_{cr}}$$

 v_R = pseudo-reduced specific volume

$$v_R = \frac{v_{actual}}{RT_{cr} / P_{cr}}$$

Lecture 2 Properties of Pure Substances


Example

Determine the pressure of water vapor at 300 °C and 0.08114 m3/kg using

- a) steam table,
- b) the ideal gas equation (R=0.4615 kJ/kg.K)
- c) the generalized compressibility chart.

Solution:

a) From the table, P = 3.0 MPa. This is the experimentally determined value.

Lecture 2

Properties of Pure Substances

b) Ideal gas

$$P = RT/v = (0.4615 \text{ kJ/kg.K}) \times (573.15 \text{ K)/}(0.08114 \text{ m3/kg})$$

 $P = 3,260 \text{ kPa} = 3.26 \text{ MPa}$

c) Real gas

For water: *Tcr* = 647.3 K; *Pcr* = 22.09 MPa

$$TR = T / Tcr = 573/647.3 = 0.89$$

$$v_R = \frac{v_{actual}}{RT_{cr} / P_{cr}} = \frac{0.08114 \times 22090}{0.4614 \times 647.3} = 6.0$$

From the chart PR = 0.135

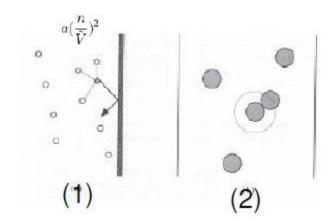
$$P = PR \times Pcr = 0.135 \times 22.09 = 2.98 MPa$$

Properties of Pure Substances

Van der Waals Equation of State:-

Considers

- (1) the intermolecular attraction forces
- (2) the volume occupied by molecules themselves.


$$\left(P + \frac{a}{v^2}\right)(v - b) = RT$$

Thus, the first and second derivatives of *P* with respect to *v* at the critical point must be zero.

$$\left(\frac{\partial P}{\partial v}\right)_{T=T_{cr}} = 0 \text{ and } \left(\frac{\partial^2 P}{\partial v^2}\right)_{T=T_{cr}} = 0$$

$$a = \frac{27R^2T_{cr}^2}{64P_{cr}} \quad \text{and} \quad b = \frac{RT_{cr}}{8P_{cr}}$$

Example

Predict the pressure of nitrogen gas at 175 K and v = 0.00375 m3/kg on the basis of

- (a) the ideal-gas equation of state
- (b) the van der Waals equation of state (a and b are given).

Compare the values obtained to the experimentally determined value of 10,000 kPa.

Solution

a)
$$P = RT/v$$

$$= (0.2968 \text{ kPa m3/kg K})(175 \text{ K})/(0.00375 \text{ m3/kg})$$

$$P = 13,851 \text{ kPa}$$
which is error by 38.5 %

b)
$$P = RT/(v-b) - a/v^{2}$$

$$a = \frac{27R^{2}T_{cr}^{2}}{64P_{cr}} = 0.175 \text{ m}^{6}kP/kg^{2}$$

$$b = \frac{RT_{cr}}{8P_{cr}} = 0.000138 \text{ m}^{3}/kg$$

which is error by 5.3 %

P = 9,471 kPa

Properties of Pure Substances

Some other properties of pure substances

> Density - mass per unit volume (mL-3)

$$\rho = m/V (kg/m3)$$

For *liquids the effect on the* density by variations in pressure and temperature is generally small.

> Specific weight - weight per unit volume (FL-3)

$$\gamma = \rho g \text{ (kg/m}^3 \times \text{m/s}^2 = \text{N/m}^3\text{)}$$

> Specific Gravity - the ratio of the density of a substance to the density of some standard substance at a specified temperature, usually water at 4 °C.

$$SG = \rho/\rho_{\text{water}}$$
 at 4°C

- > Specific Heat- The specific heat is the amount of energy per unit mass required to raise the temperature by one degree Celsius.
 - The value of *C* depends on the nature of the process undergone during the energy transfer.

Cv: at a constant volume

Cp: at a constant pressure

- ❖ For liquids and solids Cv = Cp = C.
- ❖ For gases Cp > Cv.
- ➤ Definitions of Cv and Cp for real gas:

$$C_{v} = \left(\frac{\partial u}{\partial T}\right)_{v} \qquad C_{P} = \left(\frac{\partial h}{\partial T}\right)_{P}$$